

GEOTECHNICAL ENGINEERING,
FOUNDATION OF THE FUTURE

XVII EUROPEAN CONFERENCE ON SOIL MECHANICS AND GEOTECHNICAL ENGINEERING

2 SEPTEMBER - KEYNOTE SESSION 2 - PLENARY PAPERS

THE USE OF BIM TECHNOLOGY IN GEOTECHNICAL ENGINEERING

João Gondar, JETsj, joaogondar@tecnico.ulisboa.pt Alexandre Pinto, JETsj, apinto@jetsj.com Catarina Fartaria, JETsj, cfartaria@jetsj.com

- **□** INTRODUCTION
- **□** STUDY CASE
- ☐ 3/D BIM MODELING
- ☐ 4/D BIM MODELING
- □ 5/D BIM MODELING
- ☐ FINAL REMARKS

5D/BIM

Geotechnical Engineering

INTRODUCTION

Difficulty **implementing** planning **(4D)** and budgeting **(5D)** tools.

McGraw Hill Construction (2012)

4D+5D capabilities to be seized

Low national Implementation of BIM

Productivity and construction digitalization

Advantages + Low implementation in Geotechnical Engineering

Structure (3D)

- 3D parametric modeling
- Geological and geotechnical layers

Planning (4D)

- Construction Simulation
- Clash detection
- Resource allocation

1 0 11 V

BI STATE OF THE PARTY OF THE PA

Budgeting (5D)

- Automatized QTO
- Procurement
- Multi-scenario analysis

"Geotechnical engineering includes not only **financial**

risks but also for structural and physical integrity"

Sterling (2017)

M odeling

XVII EUROPEAN CONFERENCE ON SOIL MECHANICS AND **GEOTECHNICAL ENGINEERING**

"n"D Models

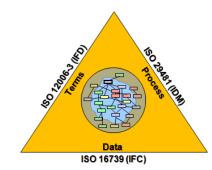
Interoperability

Information

BIM

Collaboration

INTRODUCTION


LOD 100 LOD 200 LOD 300 LOD 400 LOD 500 Approximate geometry Precise Geometry As Built Fabrication uilding nformation

"The methodology won't be **linear** but colaborative"

Carmona & Irwin (2007)

"Information coming from different sources is centralized in a single model, ensuring its constant share and update"

Carmona & Irwin (2007)

Level of Development

(LoD)

- INTRODUCTION
- **□** STUDY CASE
- ☐ 3/D BIM MODELING
- ☐ 4/D BIM MODELING
- □ 5/D BIM MODELING
- FINAL REMARKS

STUDY CASE:

LISBON'S PUBLIC PARKING LOT "ARCO DO CEGO"

Restrains:

- Geological and geotechnical
- Adjacent infrastructures
- Execution deadlines

Constructive Solutions:

- Bored Pile Wall -600mm //1,2m
- Temporary grout anchors - 2 levels
- King Post Walls -Ramp

- INTRODUCTION
- **□** STUDY CASE
- □ 3/D BIM MODELING
- □ 4/D BIM MODELING
- □ 5/D BIM MODELING
- FINAL REMARKS

3D/BIM MODELING

Georeferencing

Units

Phasing

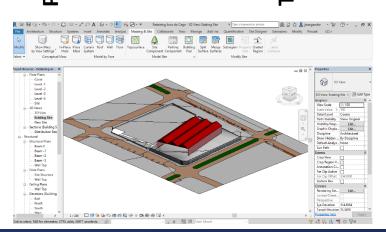
Levels

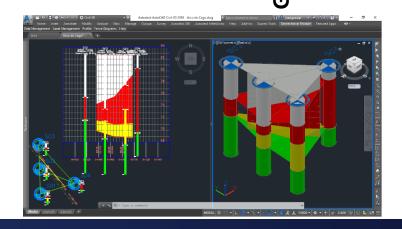
Preparation

Restrains

Quantities

Fopography

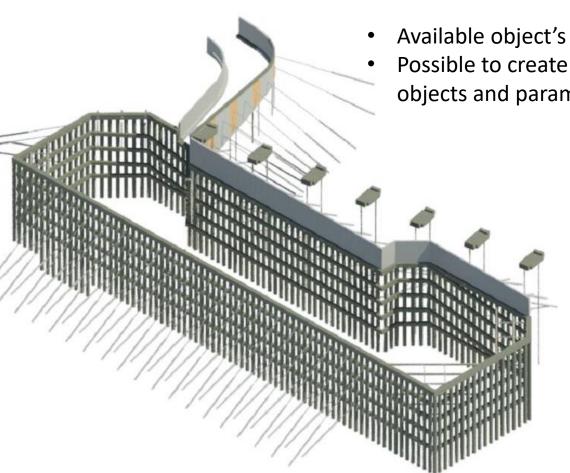

Bored Piles King Post Walls Concrete Beams


Steel Profiles

Grout anchors

Compatibilization Optimization

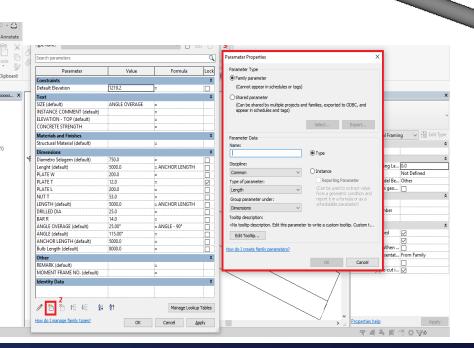
Geotechnical



Free Length = 5000

Bulb Length = 7000

3D/BIM MODELING PARAMETRIC ELEMENTS

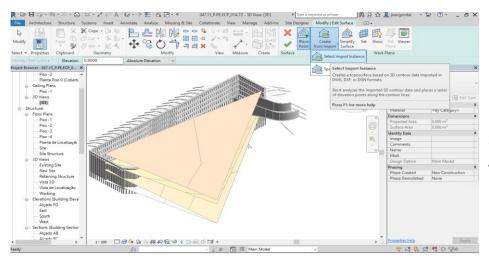


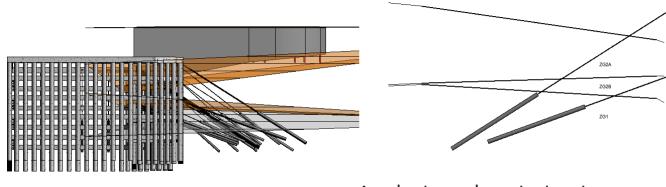
Available object's library Possible to create different kinds of objects and parameters

... Ref. Level

Ceiling Plans Elevations (Elevation

⊕ [@] Groups

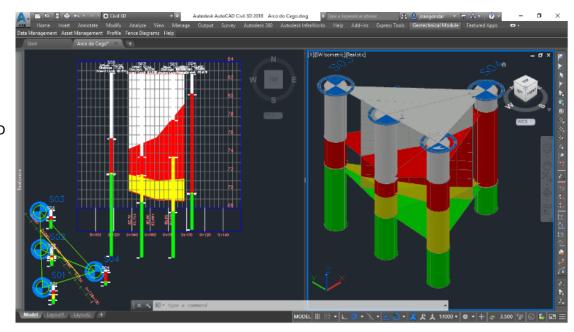




3D/BIM MODELING GEOTECHNICAL LAYERS

3 – Import to 3D model

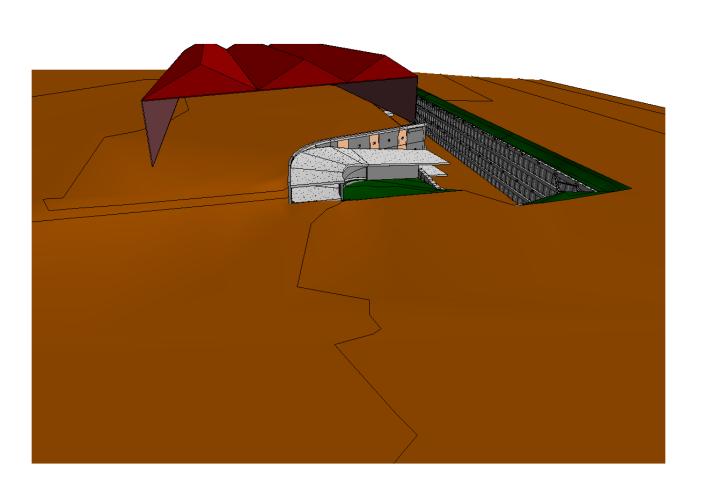
4 – Analysis and optimization

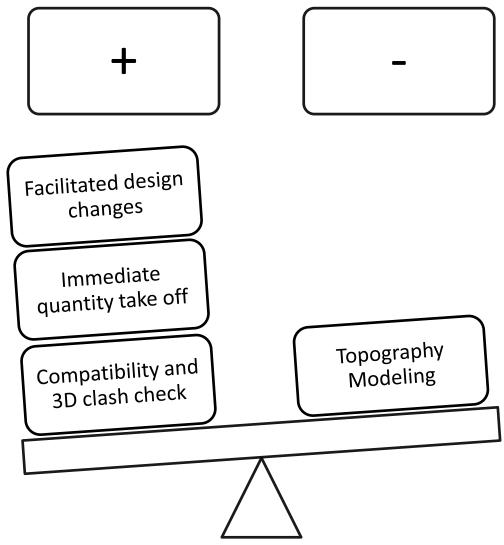

Revit

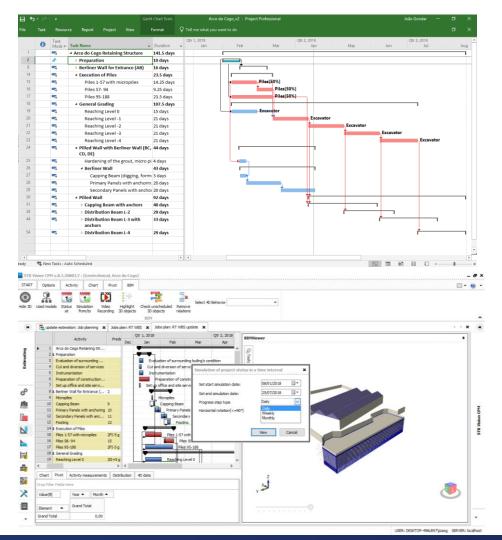
2 - Surfaces

AutoCAD Civil 3D

1 – Geological and Geotechnical Study


Layer	Geotechnical Zone	N _{spt}	Weight (kN/m³)	Angle of Friction (°)	Cohesion (kPa)	Young Modulus (MPa)
Landfill	ZG3	0 – 7	18	24	-	3
Miocenic	ZG2A	6 – 26	19	32	5	10
	ZG2B	30 - 45	20	34	10	20
	ZG1	60	20	36	20	50




- INTRODUCTION
- **□** STUDY CASE
- ☐ 3/D BIM MODELING
- ☐ 4/D BIM MODELING
- □ 5/D BIM MODELING
- ☐ FINAL REMARKS

4D/BIM MODEL

Construction
Planning
(MS Project)

Import
3D Model (IFC) +
Planning (XML);

3D elements with planning

Link

- INTRODUCTION
- STUDY CASE
- ☐ 3/D BIM MODELING
- ☐ 4/D BIM MODELING
- □ 5/D BIM MODELING
- FINAL REMARKS

Piles 1-57 with micropiles

1.7.1.4 Casting of the capping beam 11
1.7.1.1 Demoish of the piles' head ... 53;56

1.7.1.5 Intrumentation devices setup 9

Distribution Beam L-2 1.7.2.1 Drainage elements

1.7.2.2 Displacement of connection... 57 Chart Pivot Activity measurements Distribution 4D data

■ 1.7.2

Capping Beam framing and ... 10

Berliner Wall Primary Panels with anchoring 4 Capping Beam with anchors 56:53

STR Vision CPM v.8.3.30803.7 : (AZ1, Retaining Structure) Demo version

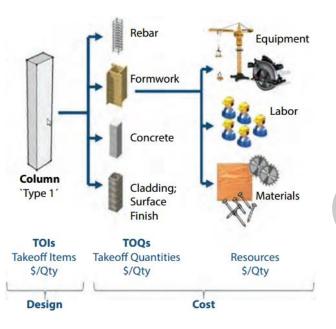
Projects and contracts

M Estimating

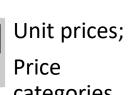
> Operating budge

Subcontracts

X Maintenance Plans


Building Site Journal

State of work


Safety Plans

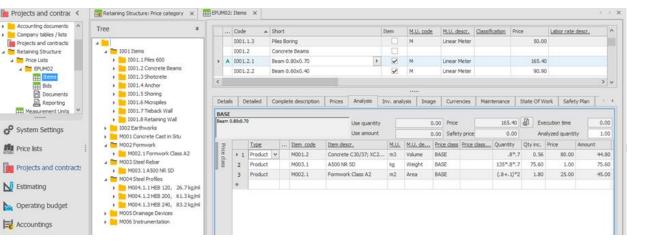

5D/BIM MODEL

Price categories.

300000 -

200000

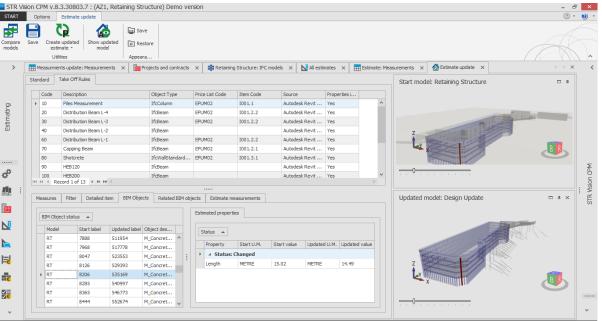
Piles 1-57 with micropiles



Execution of shorings and anchorings

Casting of the capping beam ne piles' head and execution of the capping be

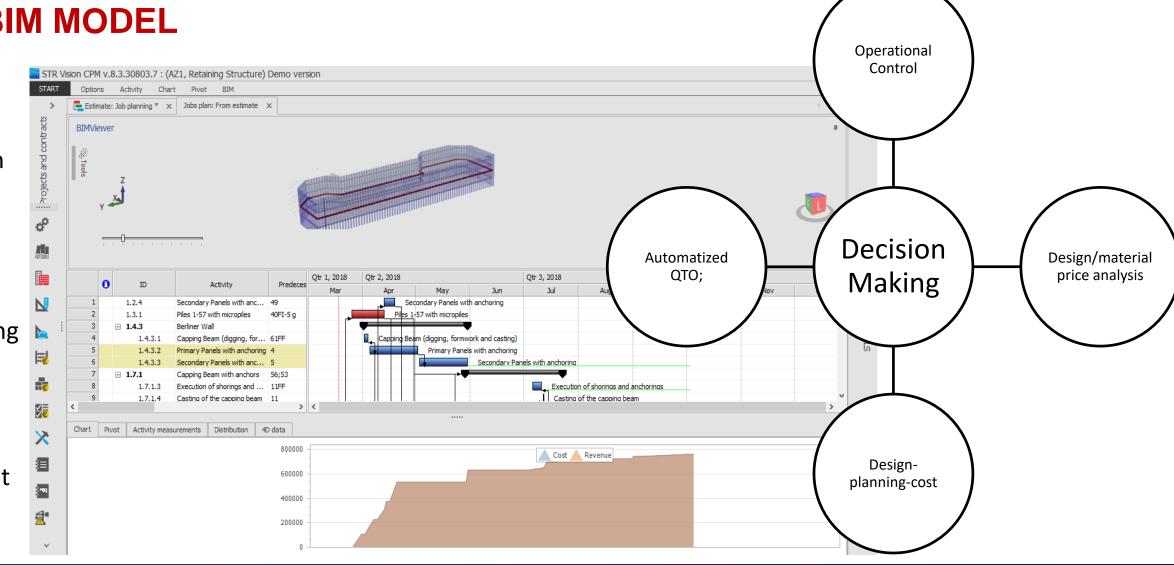
Measurement Rules



5D/BIM MODEL

Available Tools:

- Price comparison between different design solutions;
- Constructive materials price analysis;
- Analyze different planning options;
- Procurement and bid selection support.



Budget

- INTRODUCTION
- **□** STUDY CASE
- ☐ 3/D BIM MODELING
- CONSTRUCTION MANAGEMENT BASED ON BIM
- ☐ FINAL REMARKS

GEOTECHNICAL ENGINEERING

FINAL REMARKS

Advantages for Geotechnical Engineering:

- 3D analysis;
- Collaboration;
- Optimized solutions;
- Decision-making;
- Reduced risk.

Challenges:

- Improve interoperability;
- Training + experience.

GEOTECHNICAL ENGINEERING,
FOUNDATION OF THE FUTURE

REYKJAVIK, ICELAND 1 - 6 SEPTEMBER 2019

XVII EUROPEAN CONFERENCE ON SOIL MECHANICS AND GEOTECHNICAL ENGINEERING

2 SEPTEMBER - KEYNOTE SESSION 2 - PLENARY PAPERS

THE USE OF BIM TECHNOLOGY IN GEOTECHNICAL ENGINEERING

THANK YOU FOR YOUR KIND ATTENTION

www.jetsj.com info@jetsj.com